Abstract

To develop and validate an automated morphometric analysis framework for the quantitative analysis of geometric hip joint parameters in MR images from the German National Cohort (GNC) study. A secondary analysis on 40 participants (mean age, 51 years; age range, 30-67 years; 25 women) from the prospective GNC MRI study (2015-2016) was performed. Based on a proton density-weighted three-dimensional fast spin-echo sequence, a morphometric analysis approach was developed, including deep learning-based landmark localization, bone segmentation of the femora and pelvis, and a shape model for annotation transfer. The centrum-collum-diaphyseal, center-edge (CE), three alpha angles, head-neck offset (HNO), and HNO ratio along with the acetabular depth, inclination, and anteversion were derived. Quantitative validation was provided by comparison with average manual assessments of radiologists in a cross-validation format. Paired-sample t tests with a Bonferroni-corrected significance level of .005 were employed alongside mean differences and 10th/90th percentiles, median absolute deviations (MADs), and intraclass correlation coefficients (ICCs). High agreement in mean Dice similarity coefficients was achieved (average of 97.52% ± 0.46 [standard deviation]). The subsequent morphometric analysis produced results with low mean MAD values, with the highest values of 3.34° (alpha 03:00 o'clock position) and 0.87 mm (HNO) and ICC values ranging between 0.288 (HNO ratio) and 0.858 (CE) compared with manual assessments. These values were in line with interreader agreements, which at most had MAD values of 4.02° (alpha 12:00 o'clock position) and 1.07 mm (HNO) and ICC values ranging between 0.218 (HNO ratio) and 0.777 (CE). Automatic extraction of geometric hip parameters from MRI is feasible using a morphometric analysis approach with deep learning.Keywords: Computer-Aided Diagnosis (CAD), Interventional-MSK, MR-Imaging, Neural Networks, Skeletal-Appendicular, Hip, Anatomy, Computer Applications-3D, Segmentation, Vision, Application Domain, Quantification Supplemental material is available for this article. © RSNA, 2021.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call