Abstract
Abstract Developments in spaceborne Earth Observation (EO) sensor technology over the last decade, combined with well-tested physical models and multispectral data-processing techniques developed from the early 1980s, have paved the way to the global monitoring of volcanoes by sensors of metric, decametric, kilometric and multi-kilometric spatial resolution. Such variable geometries provide for revisit intervals ranging from about monthly – at high-spatial resolution in Low-Earth Orbit – to less than 5 min – at low-spatial resolution, from geostationary platforms. There are currently about 20 spacecrafts available for carrying out 24/7 quantitative observations of volcanic unrest, at all resolutions and as close as possible to real-time. We show some successful examples of synergetic EO on volcanoes on three continents from 10 different payloads, automatically processed with three, end-to-end unsupervised procedures, on eight major eruptions and a lava lake between 2006 and 2014.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.