Abstract
Mastoiditis occurs due to inflammation that can affect the structure of the mastoid bone. The mastoid bone consists of the mastoid air cell system (MACS) which protects the ear structures and regulates air pressure in the ear and has different sizes and characteristics, making it very difficult to identify precisely. This study aims to identify and find the right MACS size by developing an automatic identification model and obtaining the optimal threshold value in the segmentation process using the extended adaptive threshold (eAT) method. The research dataset uses computed tomography (CT)-scan images of 308 slices of 12 patients indicated for mastoiditis. The results of this study provide identification that has the right MACS accuracy and size. Overall, the optimal segmentation process obtained the smallest threshold value of 57 and the largest threshold value of 63, the smallest MACS size is 4.025 cm2 and the largest is 8.816 cm2 with an accuracy rate of 93.4%. The smaller MACS size indicates inflammation in the mastoid area and these patients require more intensive treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Indonesian Journal of Electrical Engineering and Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.