Abstract
Generic extraction methods for the multi-compound pesticide analysis of food have found their solid place in laboratories. Ethyl acetate and acetonitrile extraction methods have been developed as fast and easy to handle standard multi-compound methods, both feature benefits and limitations. The direct injection to gas chromatography can be impaired by a high burden of coextracted matrix, resulting in deterioration of the chromatographic system and matrix effects, requiring frequent maintenance. Therefore, common clean-up methods, such as dispersive solid-phase extraction, freeze-out of fats, or gel permeation chromatography, have been applied in clean-up. Automated clean-up using micro-solid-phase extraction (µSPE) is a recent development with several demonstrated advantages when employed in the analysis of pesticides and other contaminants in foods extracted with acetonitrile, but it has not yet been evaluated in this application using ethyl acetate for extraction. In this study, an automated procedure using µSPE cartridges was developed and established on an x,y,z robotic sampler for the raw extract clean-up and preparation of diluted samples for injection on a GC-MS/MS system. Validation experiments for 212 pesticides, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons in lettuce, avocado, raspberry, paprika, egg, and liver extracts were performed using µSPE with MgSO4, PSA, C18, and CarbonX. The performance in routine operation is briefly discussed.Graphical abstract
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.