Abstract

To introduce and evaluate the performance of an automated fat quantification method for water-saturated magnetic resonance images. A fat distribution model is proposed for fat quantification on water saturated magnetic resonance images. Fat from both full- and partial-volume voxels are accounted for in this model based on image intensity histogram analysis. An automated threshold method is therefore proposed to accurately quantify total fat. This method is compared to a traditional full-volume-fat-only method in phantom and human studies. In the phantom study, fat quantification was performed on MR images obtained from a human abdomen oil phantom and was compared with the true oil volumes. In the human study, results of the two fat quantification methods of six subjects were compared on abdominal images with different spatial resolutions. In the phantom study, the proposed method provided significantly more accurate estimations of true oil volumes compared to the reference method (P < 0.0001). In human studies, fat quantification using the proposed method gave much more consistent results on images with different spatial resolutions, and on regions with different degrees of partial volume averaging. The proposed automated method is simple, rapid, and accurate for fat quantification on water-saturated MR images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.