Abstract

This paper aims at discussing an automated measurement system for detecting carbonation depth in concrete sprayed with phenolphthalein. Image processing and Convolutional Neural Networks strategies are exploited to accurately separate the carbonated and non-carbonated areas and to remove those aggregates on the carbonation front that could bring to a wrong evaluation of the carbonation depth. Very strong correlation (R2 = 0.96) is found between results provided by the proposed approach and the method suggested by the EN 13295 standard. The expanded uncertainty (coverage factor k = 2) of this novel approach is 0.08 mm. ANOVA analysis performed in multi-operator tests proved that the highest source of uncertainty is the measurement system, which, on the other hand, is robust to changes in the operator performing the measurement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.