Abstract

Automated measurement of spine indices on axial magnetic resonance (MR) images plays a significant role in lumbar spinal stenosis diagnosis. Existing direct spine indices measurement approaches fail to explicitly focus on the task-specific region or feature channel with the additional information for guiding. We aim to achieve accurate spine indices measurement by introducing the guidance of the segmentationtask. In this paper, we propose a segmentation-guided regression network (SGRNet) to achieve automated spine indices measurement. SGRNet consists of a segmentation path for generating the spine segmentation prediction and a regression path for producing spine indices estimation. The segmentation path is a U-Net-like network which includes a segmentation encoder and a decoder which generates multilevel segmentation features and segmentation prediction. The proposed segmentation-guided attention module (SGAM) in the regression encoder extracts the attention-aware regression feature under the guidance of the segmentation feature. Based on the attention-aware regression feature, a fully connected layer is utilized to output the accurate spine indicesestimation. Experiments on the open-access Lumbar Spine MRI data set show that SGRNet achieves state-of-the-art performance with a mean absolute error of 0.49 mm and mean Pearson correlation coefficient of 0.956 for four indicesestimation. The proposed SGAM in SGRNet is capable of improving the performance of spine indices measurement by focusing on the task-specific region and feature channel under the guidance of the segmentationtask.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call