Abstract
ObjectivePostoperative delirium (POD) is a common postoperative complication that is relevant to poor outcomes. Therefore, it is critical to find effective methods to identify patients with high risk of POD rapidly. Creating a fully automated score based on an automated machine‐learning algorithm may be a method to predict the incidence of POD quickly.Materials and methodsThis is the secondary analysis of an observational study, including 531 surgical patients who underwent general anesthesia. The least absolute shrinkage and selection operator (LASSO) was used to screen essential features associated with POD. Finally, eight features (age, intraoperative blood loss, anesthesia duration, extubation time, intensive care unit [ICU] admission, mini‐mental state examination score [MMSE], Charlson comorbidity index [CCI], postoperative neutrophil‐to‐lymphocyte ratio [NLR]) were used to established models. Four models, logistic regression, random forest, extreme gradient boosted trees, and support vector machines, were built in a training set (70% of participants) and evaluated in the remaining testing sample (30% of participants). Multivariate logistic regression analysis was used to explore independent risk factors for POD further.ResultsModel 1 (logistic regression model) was found to outperform other classifier models in testing data (area under the curve [AUC] of 80.44%, 95% confidence interval [CI] 72.24%–88.64%) and achieve the lowest Brier Score as well. These variables including age (OR = 1.054, 95%CI: 1.017~1.093), extubation time (OR = 1.027, 95%CI: 1.012~1.044), ICU admission (OR = 2.238, 95%CI: 1.313~3.793), MMSE (OR = 0.929, 95%CI: 0.876~0.984), CCI (OR = 1.197, 95%CI: 1.038~1.384), and postoperative NLR (OR = 1.029, 95%CI: 1.002~1.057) were independent risk factors for POD in this study.ConclusionsWe have built and validated a high‐performing algorithm to demonstrate the extent to which patient risk changes of POD during the perioperative period, thus leading to a rational therapeutic choice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.