Abstract

Lung cancer is one of the major causes of cancer-related deaths due to its aggressive nature and delayed detections at advanced stages. Early detection of lung cancer is very important for the survival of an individual, and is a significant challenging problem. Generally, chest radiographs (X-ray) and computed tomography (CT) scans are used initially for the diagnosis of the malignant nodules; however, the possible existence of benign nodules leads to erroneous decisions. At early stages, the benign and the malignant nodules show very close resemblance to each other. In this paper, a novel deep learning-based model with multiple strategies is proposed for the precise diagnosis of the malignant nodules. Due to the recent achievements of deep convolutional neural networks (CNN) in image analysis, we have used two deep three-dimensional (3D) customized mixed link network (CMixNet) architectures for lung nodule detection and classification, respectively. Nodule detections were performed through faster R-CNN on efficiently-learned features from CMixNet and U-Net like encoder–decoder architecture. Classification of the nodules was performed through a gradient boosting machine (GBM) on the learned features from the designed 3D CMixNet structure. To reduce false positives and misdiagnosis results due to different types of errors, the final decision was performed in connection with physiological symptoms and clinical biomarkers. With the advent of the internet of things (IoT) and electro-medical technology, wireless body area networks (WBANs) provide continuous monitoring of patients, which helps in diagnosis of chronic diseases—especially metastatic cancers. The deep learning model for nodules’ detection and classification, combined with clinical factors, helps in the reduction of misdiagnosis and false positive (FP) results in early-stage lung cancer diagnosis. The proposed system was evaluated on LIDC-IDRI datasets in the form of sensitivity (94%) and specificity (91%), and better results were obatined compared to the existing methods.

Highlights

  • Lung cancer is one of the deadliest cancers worldwide

  • Performed for the detection of lung nodules on the LUNA16 [29] dataset, and the LIDC-IDRI annotated data was used for the classification of on the LUNA16 dataset, and theLUNA

  • The proposed multi-strategy-based lung nodule detection and classification system has the objective of false positive reduction at early stages

Read more

Summary

Introduction

Lung cancer is one of the deadliest cancers worldwide. the early detection of lung cancer significantly improves survival rate. Cancerous (malignant) and noncancerous (benign) pulmonary nodules are the small growths of cells inside the lung. Detection of malignant lung nodules at an early stage is necessary for the crucial prognosis [1]. Various diagnostic procedures are used by physicians, in connection, for the early diagnosis of malignant lung nodules, such as clinical settings, computed tomography (CT) scan analysis (morphological assessment), positron emission tomography (PET) (metabolic assessments), and needle prick biopsy analysis [4]. Mostly invasive methods such as biopsies or surgeries are used by healthcare practitioners to differentiate between benign and malignant lung nodules. For such a fragile and sensitive organ, invasive methods involve lots of risks and increase patients’ anxieties

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.