Abstract
The purpose of this study was to compare the effects of combined automated tube voltage selection and automated tube current modulation on radiation dose and image quality in small-sized phantoms undergoing computed tomography angiography (CTA) with the use of automated current modulation alone. Three semianthropomorphic phantoms, corresponding to a neonate, a small child, and a small adult, underwent simulated abdominal CTA using an automated tube voltage selection technology, which simultaneously optimizes kilovoltage (in kilovolt [peak]) and tube-current/milliamperage (in milliampere-second) on the basis of the patient topogram and clinical task. The phantoms were scanned with 2 protocols: protocol A, using the combination of automated kilovoltage and milliamperage, and protocol B, using only automated milliamperage with the standard 120 kV(p). Radiation doses were measured for each phantom, and the measurements were then used to estimate volume computed tomography dose index. Image noise and iodine contrast, contrast-to-noise ratio, and the relative dose factor were assessed. Differences were tested using paired t tests, and percentage differences for various technical factors and the phantom sizes were calculated. The computed tomography dose index was significantly lower in protocol A (mean, 3.3 mGy) compared with that in protocol B (mean, 7.7 mGy), representing a 56.0% dose reduction (P = 0.01). In protocol A, tube potential dropped from 120 to 70 kV(p) in the small and medium phantoms and to 80 kV(p) in the large phantom. For each phantom size, image noise and iodine contrast increased significantly in protocol A relative to those in protocol B (P = 0.03 and P < 0.01, respectively). Corresponding contrast-to-noise ratio values increased by 9.1% in protocol A relative to those in protocol B (P = 0.04). The relative dose factor values for protocol A relative to those for protocol B were 31%, 36%, and 44% for the small, medium, and large phantoms, respectively. Combined use of automated kilovoltage selection and automated tube current modulation is more effective for reducing radiation dose and maintaining image quality during simulated pediatric CTA than is automated tube current modulation in isolation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.