Abstract

Abstract Rapid increases in the flash rate (FR) of a thunderstorm, so-called lightning jumps (LJs), have potential for nowcasting applications and to increase lead times for severe weather warnings. To date, there are some automated LJ algorithms that were developed and tuned for ground-based lightning locating systems. This study addresses the optimization of an automated LJ algorithm for the Geostationary Lightning Mapper (GLM) lightning observations from space. The widely used σ-LJ algorithm is used in its original form and in an adapted calculation including the footprint area of the storm cell (FRarea LJ algorithm). In addition, a new relative increase level (RIL) LJ algorithm is introduced. All algorithms are tested in different configurations, and detected LJs are verified against National Centers for Environmental Information severe weather reports. Overall, the FRarea algorithm with an activation FR threshold of 15 flashes per minute and a σ-level threshold of 1.0–1.5 as well as the RIL algorithm with FR threshold of 15 flashes per minute and RIL threshold of 1.1 are recommended. These algorithms scored the best critical success index (CSI) of ∼0.5, with a probability of detection of 0.6–0.7 and a false alarm ratio of ∼0.4. For daytime warm-season thunderstorms, the CSI can exceed 0.5, reaching 0.67 for storms observed during three consecutive days in April 2021. The CSI is generally lower at night and in winter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.