Abstract

New developments in electron microscopy technology, improved efficiency of detectors, and artificial intelligence applications for data analysis over the past decade have increased the use of volume electron microscopy (vEM) in the life sciences field. Moreover, sample preparation methods are continuously being modified by investigators to improve final sample quality, increase electron density, combine imaging technologies, and minimize the introduction of artifacts into specimens under study. There are a variety of conventional bench protocols that a researcher can utilize, though most of these protocols require several days. In this work, we describe the utilization of an automated specimen processor, the mPrep™ ASP-2000™, to prepare samples for vEM that are compatible with focused ion beam scanning electron microscopy (FIB-SEM), serial block face scanning electron microscopy (SBF-SEM), and array tomography (AT). The protocols described here aimed for methods that are completed in a much shorter period of time while minimizing the exposure of the operator to hazardous and toxic chemicals and improving the reproducibility of the specimens' heavy metal staining, all without compromising the quality of the data acquired using backscattered electrons during SEM imaging. As a control, we have included a widely used sample bench protocol and have utilized it as a comparator for image quality analysis, both qualitatively and using image quality analysis metrics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.