Abstract

The Ki-67 labeling index (Ki-67 LI) is a strong prognostic marker in prostate cancer, although its analysis requires cumbersome manual quantification of Ki-67 immunostaining in 200-500 tumor cells. To enable automated Ki-67 LI assessment in routine clinical practice, a framework for automated Ki-67 LI quantification, which comprises three different artificial intelligence analysis steps and an algorithm for cell-distance analysis of multiplex fluorescence immunohistochemistry (mfIHC) staining, was developed and validated in a cohort of 12,475 prostate cancers. The prognostic impact of the Ki-67 LI was tested on a tissue microarray (TMA) containing one 0.6mmsample per patient. A 'heterogeneity TMA' containing three to six samples from different tumor areas in each patient was used to model Ki-67 analysis of multiple different biopsies, and 30 prostate biopsies were analyzed to compare a 'classical' bright field-based Ki-67 analysis with the mfIHC-based framework. The Ki-67 LI provided strong and independent prognostic information in 11,845 analyzed prostate cancers (p< 0.001 each), and excellent agreement was found between the framework for automated Ki-67 LI assessment and the manual quantification in prostate biopsies from routine clinical practice (intraclass correlation coefficient: 0.94 [95% confidence interval: 0.87-0.97]). The analysis of the heterogeneity TMA revealed that the Ki-67 LI of the sample with the highest Gleason score (area under the curve [AUC]: 0.68) was as prognostic as the mean Ki-67 LI of all six foci (AUC: 0.71 [p= 0.24]). The combined analysis of the Ki-67 LI and Gleason score obtained on identical tissue spots showed that the Ki-67 LI added significant additional prognostic information in case of classical International Society of Urological Pathology grades (AUC: 0.82 [p= 0.002]) and quantitative Gleason score (AUC: 0.83 [p= 0.018]). The Ki-67 LI is a powerful prognostic parameter in prostate cancer that is now applicable in routine clinical practice. In the case of multiple cancer-positive biopsies, the sole automated analysis of the worst biopsy was sufficient. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.