Abstract

Abstract. Power line corridor inspection is a time consuming task that is performed mostly manually. As the development of UAVs made huge progress in recent years, and photogrammetric computer vision systems became well established, it is time to further automate inspection tasks. In this paper we present an automated processing pipeline to inspect vegetation undercuts of power line corridors. For this, the area of inspection is reconstructed, geo-referenced, semantically segmented and inter class distance measurements are calculated. The presented pipeline performs an automated selection of the proper 3D reconstruction method for on the one hand wiry (power line), and on the other hand solid objects (surrounding). The automated selection is realized by performing pixel-wise semantic segmentation of the input images using a Fully Convolutional Neural Network. Due to the geo-referenced semantic 3D reconstructions a documentation of areas where maintenance work has to be performed is inherently included in the distance measurements and can be extracted easily. We evaluate the influence of the semantic segmentation according to the 3D reconstruction and show that the automated semantic separation in wiry and dense objects of the 3D reconstruction routine improves the quality of the vegetation undercut inspection. We show the generalization of the semantic segmentation to datasets acquired using different acquisition routines and to varied seasons in time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.