Abstract

This study presents an impedance-based structural health monitoring (SHM) technique considering temperature effects. The temperature variation results in significant impedance variations, particularly a frequency shift in the impedance, which may lead to erroneous diagnostic results of real structures, such as civil, mechanical, and aerospace structures. In order to minimize the effect of the temperature variation on the impedance measurements, a previously proposed temperature compensation technique based on the cross-correlation between the reference-impedance data and a concurrent impedance data is revisited. In this study, cross-correlation coefficient (CC) after an effective frequency shift (EFS), which is defined as the frequency shift causing two impedance data to have the maximum correlation, is utilized. To promote a practical use of the proposed SHM strategy, an automated continuous monitoring framework using MATLAB® is developed and incorporated with the current hardware system. Validation of the proposed technique is carried out on a lab-sized steel truss bridge member under a temperature varying environment. It has been found that the CC values have shown significant fluctuations due to the temperature variation, even after applying the EFS method. Therefore, an outlier analysis providing the optimal decision limits under the inevitable variations has been carried out for more systematic damage detection. It has been found that the threshold level shall be properly selected considering the daily temperature range and the minimum target damage level for detection. It has been demonstrated that the proposed strategy combining the EFS and the outlier analysis can be effectively used in the automated continuous SHM of critical structural members under temperature variations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call