Abstract

Background. Regulating mechanisms of branching morphogenesis of fetal lung rat explants have been an essential tool for molecular research. This work presents a new methodology to accurately quantify the epithelial, outer contour, and peripheral airway buds of lung explants during cellular development from microscopic images. Methods. The outer contour was defined using an adaptive and multiscale threshold algorithm whose level was automatically calculated based on an entropy maximization criterion. The inner lung epithelium was defined by a clustering procedure that groups small image regions according to the minimum description length principle and local statistical properties. Finally, the number of peripheral buds was counted as the skeleton branched ends from a skeletonized image of the lung inner epithelia. Results. The time for lung branching morphometric analysis was reduced in 98% in contrast to the manual method. Best results were obtained in the first two days of cellular development, with lesser standard deviations. Nonsignificant differences were found between the automatic and manual results in all culture days. Conclusions. The proposed method introduces a series of advantages related to its intuitive use and accuracy, making the technique suitable to images with different lighting characteristics and allowing a reliable comparison between different researchers.

Highlights

  • Branching morphogenesis results on the creation of branched structures in the body and is a key and fundamental feature of several organs development and growth, such as lungs, pancreas, salivary glands, mammary glands, kidney, and prostate [1,2,3]

  • lung branching morphogenesis (LBM) analysis involves a morphometric analysis of lung explants differentiation and growth, during a 5day period, using stereo microscope images acquired at 24hour intervals

  • Considering the literature pitfalls, we propose a new methodology capable of automatically performing the LBM morphometric analysis in order to reduce or even eliminate the researcher dependence, providing fast, robust, userindependent, and accurate results

Read more

Summary

Introduction

Branching morphogenesis results on the creation of branched structures in the body and is a key and fundamental feature of several organs development and growth, such as lungs, pancreas, salivary glands, mammary glands, kidney, and prostate [1,2,3]. The lung branching morphogenesis (LBM) of fetal rat explants, grown in vitro, has been an essential tool in research of molecular and cellular development mechanisms. This methodology has been widely studied, at different gestational ages in vivo and in vitro, in many research centers due to its stability and versatility [4,5,6,7]. This work presents a new methodology to accurately quantify the epithelial, outer contour, and peripheral airway buds of lung explants during cellular development from microscopic images. The proposed method introduces a series of advantages related to its intuitive use and accuracy, making the technique suitable to images with different lighting characteristics and allowing a reliable comparison between different researchers

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call