Abstract

Diabetic nephropathy is a major complication in diabetes and a leading cause of end-stage renal failure. Glomerular podocytes are functionally and structurally injured early in diabetic nephropathy. A non-obese type 2 diabetes model, the spontaneously diabetic Torii (SDT) rat, is of increasing preclinical interest because of its pathophysiological similarities to human type 2 diabetic complications including diabetic nephropathy. However, podocyte injury in SDT rat glomeruli and the effect of angiotensin II receptor blocker treatment in the early stage have not been reported in detail. Therefore, we have evaluated early stages of glomerular podocyte damage and the beneficial effect of early treatment with losartan in SDT rats using desmin as a sensitive podocyte injury marker. Moreover, we have developed an automated, computational glomerulus recognition method and illustrated its specific application for quantitatively studying glomerular desmin immunoreactivity. This state-of-the-art method enabled automatic recognition and quantification of glomerular desmin-positive areas, eliminating the need to laboriously trace glomerulus borders by hand. The image analysis method not only enabled assessment of a large number of glomeruli, but also clearly demonstrated that glomerular injury was more severe in the juxtamedullary region than in the superficial cortex region. This applied not only in SDT rat diabetic nephropathy but also in puromycin aminonucleoside-induced nephropathy, which was also studied. The proposed glomerulus image analysis method combined with desmin immunohistochemistry should facilitate evaluations in preclinical drug efficacy studies as well as elucidation of the pathophysiology of diabetic nephropathy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.