Abstract

To handle increasing complexity in product development, model-based systems engineering (MBSE) approaches are well suited, in which the technical system is represented in a system model. To efficiently test requirements, domain models are integrated into the system model. For each purpose (e.g., battery lifetime calculation), there are typically several models at several fidelity levels. Since the model signatures (i.e., necessary inputs for the models and their outputs) differ depending on the fidelity level, not all models can be used in any development phase. In addition, due to the different model signatures, not all models can be combined arbitrarily to model networks. Currently, valid model networks in system models must be determined in a time-consuming, manual process. Therefore, this paper presents an approach that automates this task via the implementation of an algorithm that analyzes a system model and the model signatures and automatically returns all valid model networks. When input parameters, models or their signatures change, the algorithm updates automatically, and the user receives the valid model network without any manual effort. The approach is demonstrated with the running example of battery system development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.