Abstract

BackgroundGene expression analyses demand appropriate reference genes (RGs) for normalization, in order to obtain reliable assessments. Ideally, RG expression levels should remain constant in all cells, tissues or experimental conditions under study. Housekeeping genes traditionally fulfilled this requirement, but they have been reported to be less invariant than expected; therefore, RGs should be tested and validated for every particular situation. Microarray data have been used to propose new RGs, but only a limited set of model species and conditions are available; on the contrary, RNA-seq experiments are more and more frequent and constitute a new source of candidate RGs.ResultsAn automated workflow based on mapped NGS reads has been constructed to obtain highly and invariantly expressed RGs based on a normalized expression in reads per mapped million and the coefficient of variation. This workflow has been tested with Roche/454 reads from reproductive tissues of olive tree (Olea europaea L.), as well as with Illumina paired-end reads from two different accessions of Arabidopsis thaliana and three different human cancers (prostate, small-cell cancer lung and lung adenocarcinoma). Candidate RGs have been proposed for each species and many of them have been previously reported as RGs in literature. Experimental validation of significant RGs in olive tree is provided to support the algorithm.ConclusionRegardless sequencing technology, number of replicates, and library sizes, when RNA-seq experiments are designed and performed, the same datasets can be analyzed with our workflow to extract suitable RGs for subsequent PCR validation. Moreover, different subset of experimental conditions can provide different suitable RGs.

Highlights

  • Gene expression analyses demand appropriate reference genes (RGs) for normalization, in order to obtain reliable assessments

  • Conclusions of any quantitative PCR (qPCR) experiment are depending on RGs, and on the selection of an appropriate normalization method

  • Relative quantification is the most widely used method for normalization, where gene expression level is normalized by an internal RG that should remain constant in all experimental conditions under study

Read more

Summary

Introduction

Gene expression analyses demand appropriate reference genes (RGs) for normalization, in order to obtain reliable assessments. The use of an appropriate reference gene (RG) to avoid false results and for proper interpretation of gene expression data soon emerged as a significant concern in these experiments, mainly due to the increased sensitivity of qPCR with respect to Northern blotting and RT-PCR. The first RGs were brought from Northerns and usually encoded proteins involved in structural functions and basic cell metabolism due to their theoretical expression invariability in most tissues. This initial election was revealed inappropriate [2,3,4] and the quest of more reliable RGs has been pursued in the literature [5,6,7,8]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call