Abstract

BackgroundMonogeneans are flatworms (Platyhelminthes) that are primarily found on gills and skin of fishes. Monogenean parasites have attachment appendages at their haptoral regions that help them to move about the body surface and feed on skin and gill debris. Haptoral attachment organs consist of sclerotized hard parts such as hooks, anchors and marginal hooks. Monogenean species are differentiated based on their haptoral bars, anchors, marginal hooks, reproductive parts’ (male and female copulatory organs) morphological characters and soft anatomical parts. The complex structure of these diagnostic organs and also their overlapping in microscopic digital images are impediments for developing fully automated identification system for monogeneans (LNCS 7666:256-263, 2012), (ISDA; 457–462, 2011), (J Zoolog Syst Evol Res 52(2): 95–99. 2013;). In this study images of hard parts of the haptoral organs such as bars and anchors are used to develop a fully automated identification technique for monogenean species identification by implementing image processing techniques and machine learning methods.ResultImages of four monogenean species namely Sinodiplectanotrema malayanus, Trianchoratus pahangensis, Metahaliotrema mizellei and Metahaliotrema sp. (undescribed) were used to develop an automated technique for identification. K-nearest neighbour (KNN) was applied to classify the monogenean specimens based on the extracted features. 50% of the dataset was used for training and the other 50% was used as testing for system evaluation. Our approach demonstrated overall classification accuracy of 90%. In this study Leave One Out (LOO) cross validation is used for validation of our system and the accuracy is 91.25%.ConclusionsThe methods presented in this study facilitate fast and accurate fully automated classification of monogeneans at the species level. In future studies more classes will be included in the model, the time to capture the monogenean images will be reduced and improvements in extraction and selection of features will be implemented.

Highlights

  • Monogeneans are flatworms (Platyhelminthes) that are primarily found on gills and skin of fishes

  • The methods presented in this study facilitate fast and accurate fully automated classification of monogeneans at the species level

  • Monogeneans are very diversified in terms of morphology and they are the only flatworm clade that have advanced adaptive radiation [2], with the variation of structural designs in the attachment organs [4], which are usually used for species identification

Read more

Summary

Introduction

Monogeneans are flatworms (Platyhelminthes) that are primarily found on gills and skin of fishes. Monogenean species are differentiated based on their haptoral bars, anchors, marginal hooks, reproductive parts’ (male and female copulatory organs) morphological characters and soft anatomical parts. In this study images of hard parts of the haptoral organs such as bars and anchors are used to develop a fully automated identification technique for monogenean species identification by implementing image processing techniques and machine learning methods. The haptoral attachment organ is characterized by sclerotized structures such as anchors, bars, hooks, etc The morphology of these organs are usually unique to monogenean species [5] and are used as diagnostic characters in taxonomy [6, 7]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.