Abstract

The widespread use of minimally invasive surgery generates vast amounts of potentially useful data in the form of surgical video. However, raw video footage is often unstructured and unlabeled, thereby limiting its use. We developed a novel computer-vision algorithm for automated identification and labeling of surgical steps during robotic-assisted radical prostatectomy (RARP). Surgical videos from RARP were manually annotated by a team of image annotators under the supervision of 2 urologic oncologists. Full-length surgical videos were labeled to identify all steps of surgery. These manually annotated videos were then utilized to train a computer vision algorithm to perform automated video annotation of RARP surgical video. Accuracy of automated video annotation was determined by comparing to manual human annotations as the reference standard. A total of 474 full-length RARP videos (median 149 minutes; IQR 81 minutes) were manually annotated with surgical steps. Of these, 292 cases served as a training dataset for algorithm development, 69 cases were used for internal validation, and 113 were used as a separate testing cohort for evaluating algorithm accuracy. Concordance between artificial intelligence‒enabled automated video analysis and manual human video annotation was 92.8%. Algorithm accuracy was highest for the vesicourethral anastomosis step (97.3%) and lowest for the final inspection and extraction step (76.8%). We developed a fully automated artificial intelligence tool for annotation of RARP surgical video. Automated surgical video analysis has immediate practical applications in surgeon video review, surgical training and education, quality and safety benchmarking, medical billing and documentation, and operating room logistics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.