Abstract
ABSTRACT Cataract is the most prevalent cause of blindness worldwide, which accounts for more than 51% of overall blindness. The early detection of cataract can salvage impaired vision leading to blindness. Most of the existing cataract classification systems are based on traditional machine learning methods with hand-engineered features. The manual extraction of retinal features is generally a time-taking process and requires professional ophthalmologists. Convolutional neural network (CNN) is a widely accepted model for automatic feature extraction, but it necessitates a larger dataset to evade overfitting problems. Contrarily, classification using SVM has great generalisation power to elucidate small-sample dataset. Therefore, we proposed a hybrid model by integrating deep learning models and SVM for 4-class cataract classification. The transfer learning-based models (AlexNet, VGGNet, ResNet) are employed for automatic feature extraction and SVM performs as a recogniser. The proposed architecture evaluated on 8030 retinal images with strong feature extraction and classification techniques has achieved 95.65% of accuracy. The results of this study have verified that the proposed method outperforms conventional methods and can provide a reference for other retinal diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.