Abstract
Abstract Cross sections carry information on the spatial distribution of rock strata and the development of geological structures, and it is an important data source for three-dimensional (3D) geological modeling. However, the interpretation and mapping of geological structures in sections by means of manual interpretation are inefficient and costly, and the performance varies greatly with the experts’ ability and experience. The objective of this article is to develop an automatic recognition and mapping method for folds in cross sections. This method mainly includes identifying folds based on stratigraphic sequence characteristics (symmetrical and repetitive), classifying fold types based on geometric attributes of folds (interval scheduling, strike, and section morphology), optimizing strata based on the superposition principle and area conservation principle, and constructing the polygon features of folds. Based on experiments in the Parallel Fold Belt of Eastern Sichuan and the central Appalachian fold-thrust belt in the Appalachian Mountains, the method presented in this article can effectively be used for automatic recognition and high-quality mapping of folds in the cross sections. The method provides a good source of geological cross-sectional data for the 3D modeling of geologic bodies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.