Abstract

The disinfection of drinking water is an important aspect to human health. However, this process leads to potentially harmful disinfection by-products that should be monitored prior to drinking water reaching homes and businesses. Agencies such as the World Health Organization and United States Environmental Protection Agency set recommended levels for disinfection by-products and trace elements to keep the consumer healthy. In this work a single platform, automated total metals (adapted EPA 6020B method) and halogen speciation method is presented for water analysis that can help laboratories become more efficient while providing new capabilities. Samples from around the Atlanta, GA, USA region were collected and analyzed to investigate the effects of the local counties’ water before and after the water treatment processes. The detection limits for this method were found to be 29 ng L−1 bromide, 31 ng L−1 bromate, 5.5 ng L−1 iodide, 1.8 ng L−1 iodate, 0.7 µg L−1 chloride, 2.6 µg L−1 chlorite, 6.8 µg L−1 chlorate, and 9.5 µg L−1 perchlorate. This halogen speciation method is completed in under 3 min per sample and can be automated into a single analytical run with trace elemental analysis when combined with an ICP-MS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.