Abstract

Monitoring of the concentration of gentamicin in serum and plasma during therapy is widely recommended and practiced in hospitals. Our aim was to develop a homogeneous immunoassay based on particle-enhanced turbidimetric inhibition immunoassay technology to quantify gentamicin on the Dimension clinical chemistry system. Assay performance was assessed on each of the Dimension models in a 15-instrument interlaboratory comparison study. A split-sample comparison (n = 1171) was also performed between the gentamicin methods on the Dimension system and the Abbott TDx analyzer, using multiple reagent and calibrator lots on multiple instruments. The Dimension method was linear to 25.1 micromol/L (12.0 microg/mL) with a detection limit of 0.63 micromol/L (0.3 microg/mL). Calibration was stable for 30 days. The within-run imprecision (CV) was <1.3%, and total imprecision ranged from 1.8% to 3.2% between 4.2 micromol/L (2.0 microg/mL) and 16.7 micromol/L (8.0 microg/mL) gentamicin. Linear regression analysis of the results on the Dimension method (DM) vs the Abbott TDx yielded the following equation: DM = 0.98TDx - 0.42; r = 0.987. Minimal interference was observed from structurally related compounds such as sagamicin, netilmicin, and sisomicin. The monoclonal antibody used in this method has similar reactivities toward the individual gentamicin subspecies C1, C1a, and C2, thus providing analytical recovery not significantly dependent on relative subspecies concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.