Abstract

Organism size and growth curves are important biological characteristics. Current methods to measure organism size, and in particular growth curves, are often resource intensive because they involve many manual steps. Here we demonstrate a method for automated, high-throughput measurements of size and growth in individual aquatic invertebrates kept in microtiter well-plates. We use a spheroid counter (Cell3iMager, cc-5000) to automatically measure size of seven different freshwater invertebrate species. Further, we generated calibration curves (linear regressions, all p < 0.0001, r2 >=0.9 for Ceriodaphnoa dubia, Asellus aquaticus, Daphnia magna, Daphnia pulex; r2 >=0.8 for Hyalella azteca, Chironomus spec. larvae and Culex spec. larvae) to convert size measured on the spheroid counter to traditional, microscope based, length measurements, which follow the longest orientation of the body. Finally, we demonstrate semi-automated measurement of growth curves of individual daphnids (C. dubia and D. magna) over time and find that the quality of individual growth curves varies, partly due to methodological reasons. Nevertheless, this novel method could be adopted to other species and represents a step change in experimental throughput for measuring organisms’ shape, size and growth curves. It is also a significant qualitative improvement by enabling high-throughput assessment of inter-individual variation of growth.

Highlights

  • Organism size and growth curves are important biological characteristics

  • Comparisons between organism diameter determined with the spheroid counter and microscope measured length, revealed that in four of the seven tested species (Ceriodaphnoa dubia, Asellus aquaticus, Daphnia magna, Daphnia pulex) the correlation between the two values was high (r2 >=0.9), while for the three other species (Hyalella azteca, Chironomus spec. larvae and Culex spec. larvae) the correlation was weaker (r2 < 0.8, Table 1)

  • The length measurements under the microscope accounted for the species specific body shape and correlations decrease from species with roughly spherical body shapes (C. dubia, A. aquaticus, D. magna, D. pulex) to species with elongated bodies (H. azteca, Chironomus sp. larvae, Culex spec. larvae)

Read more

Summary

Introduction

Organism size and growth curves are important biological characteristics They are frequently measured in a wide range of species and disciplines, for example in ecology, physiology and ecotoxicology. Due to the large number of chemical structures known (>140 million, https://support.cas.org/) and more than 100’000 on the market[8] (https://echa.europa.eu/information-on-chemicals/ec-inventory), in combination with the huge number of species in the environment, it is important to speed up toxicity testing, if possible by automation. This trend towards high-throughput testing is manifest mostly in the many in-vitro toxicity tests[9,10]. Ltd., Kyoto, Japan), to measure size related parameters in a range of aquatic invertebrate species and calibrate those measurements against traditional size measurements using a microscope, and (ii) demonstrate its suitability for measuring growth curves of individuals over time

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call