Abstract
This paper describes the design and application of instrumentation for automated high-throughput infusion ESI-mass spectrometry. The approach, based on a subatmospheric ESI interface, allows sample introduction from a commercially available microtiter plate without the need for a separate fluid delivery system. The microtiter plate was placed vertically on a three-dimensional translation stage in front of the sampling ESI interface. A single, 7-cm, 20-microm-i.d. fused-silica capillary (total volume, 70 nL), with a tapered tip, served as a combination of sample delivery and spraying capillary. The tapered tip of the capillary was enclosed in a subatmospheric chamber attached in front of the orifice of the mass spectrometer. The sample aspiration rate (flow rate) was regulated by computer-controlled pneumatic valves, which allowed fast switching of the pressure in the subatmospheric ESI chamber. A flow-through wash device was positioned between the microtiter plate and the ESI interface. This design allowed alternate filling of the capillary with (a) sample from the wells and (b) wash solution from the wash device. Sample turnaround times of 10 s/sample, with a 120-nL sample consumption/analysis, and a duty cycle (percentage of total analysis time spent acquiring data) of 40% were achieved. The infusion system was demonstrated in the analysis of preparative HPLC fractions from a small molecule combinatorial library.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.