Abstract

Muscle tissue mechanics and contractility measurements have a great advantage over cultured cell level experiments as their mechanical and contractile properties are much closer to in vivo tissue properties. However, tissue level experiments cannot be combined with incubation with the same time resolution and consistency as cell culture studies. Here we present a system in which contractile tissues can be incubated for days while intermittently being tested for their mechanical and contractile properties. A two-chamber system was developed with control of temperature in the outer chamber and CO2 and humidity control in the inner, sterile chamber. Incubation medium, to which biologically active components may be added, is reused after each mechanics test to preserve both added and released components. Mechanics and contractility are measured in a different medium to which, through a high accuracy syringe pump, up to 6 different agonists in a 100-fold dose range can be added. The whole system can be operated through fully automated protocols from a personal computer. Testing data shows accurate maintenance of temperature, CO2 and relative humidity at pre-set levels. Equine trachealis smooth muscle tissues tested in the system showed no signs of infection after 72 h with incubation medium replacement every 24 h. Methacholine dosing and electrical field stimulation every 4 h showed consistent responses. In conclusion, the developed system is a great improvement on the manual incubation techniques being used thus far, improving on time resolution, repeatability and robustness, while reducing contamination risk and tissue damage from repeated handling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call