Abstract
PurposeTo develop a framework for automated prediction of hepatobiliary (HB) toxicity after liver stereotactic body radiation therapy (SBRT). Materials and methodsA newly recognized toxicity type, named central or HB liver toxicity, had been reported, manifestation of which strongly correlates with the dose delivered to portal vein (PV) during SBRT. We propose a novel framework for automated HB toxicity prediction by combining deep learning-based auto-segmentation, PV anatomy analysis and the previously reported HB toxicity model. For validation of the framework, an IBR approved representative database of 72 patients treated with SBRT from primary (37) and metastatic (35) liver cancer was assembled. Each case included a pre-treatment CT, manual segmentations of tumor and PV, approved treatment plan, and the record of acute and late post-treatment toxicities. Performance of the developed framework was evaluated by quantitative comparison against manual predictions of HB toxicity, as well as post-treatment toxicity follow-ups. ResultsThe manual and automated predictions of HB toxicity were in agreement for 94% cases using either VBED1030 ≥ 45 cc or VBED1040 ≥ 37 cc dosimetric predictors. When compared to post-treatment follow-ups for primary liver cancer, the proposed automated framework made 86% and 83% correct predictions in comparison to 83% and 80% correct manual predictions using VBED1030 ≥ 45 cc or VBED1040 ≥ 37 cc, respectively. ConclusionThe proposed framework automates the HB toxicity prediction with the accuracy similar to manual analysis-based HB toxicity prediction. The strategy is quite general and extendable to the automated prediction of toxicities of other organs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.