Abstract

This paper deals with group constant parameterization, a necessary step to utilize the results of assembly-level neutronics calculations at the full-core level. The focus is on low sample size problems when the commonly used linear interpolation approach is inadequate, a typical situation of using Monte Carlo codes for group constant generation. This work presents a newly developed code package for automated group constant parameterization. It implements several machine learning regression models − including a novel polynomial regression algorithm − performs hyperparameter optimization and selects the best model based on a detailed evaluation. The applicability of the new code package is demonstrated in a case study for a VVER-1200 fuel assembly covering both normal operation and transient conditions. In this example, the novel polynomial regression model provides a 73 pcm average error in kinf that leads to reactivity coefficients well within the desired precision.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call