Abstract

During the joining of two metal sheets by welding, a process-specific geometry of the weld is created. The local geometry of the created weld has a decisive influence on its fatigue strength. This is due to stress concentration at the geometric notches. In this paper, a process known from mechanical engineering called deep rolling is applied on butt welds. The influence on the local weld geometry and the local stress concentration after deep rolling is investigated. Additionally, a novel automated measurement system using optical laser line scanning is presented. The system is qualified for the evaluation of the local weld geometry regarding its flank angles and toe radii. The presented investigations show that the deep rolling process influences the stress concentrations determined by 2D-FE-simulations using real scan data. A correlation between the difference in toe radii or local notch stresses before and after deep rolling and the initial flank angle was found. This indicates that there are process and geometry specific conditions for the successful application of the deep rolling process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.