Abstract

Abstract. Three-dimensional imaging demonstrates advantages over traditional methods and has already proven feasible for measuring antler growth. However, antlers' velvet-covered surface and irregular structure pose challenges in efficiently obtaining high-quality antler data. Animal data capture using optical imaging devices and point cloud segmentation still require tedious manual work. To obtain 3D data of irregular biological targets like antlers, this paper proposes an automated workflow of high-quality 3D antler point cloud generation using low-cost range cameras. An imaging system of range cameras and one RGB camera is developed for automatic camera triggering and data collection without motion artifacts. The imaging system enables motion detection to ensure data collection occurs without any appreciable animal movement. The antler data are extracted automatically based on a fast k-d tree neighbor search to remove the irrelevant data. Antler point clouds from different cameras captured with various poses are aligned using target-based registration and the normal distribution transformation (NDT). The two-step registration demonstrates precisions of the overall RMSE of 4.8mm for the target-based method and Euclidean fitness score of 10.5mm for the NDT. Complete antler point clouds are generated with a higher density than that of individual frames and improved quality with outliers removed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.