Abstract
Modern vehicles are governed by a network of Electronic Control Units (ECUs), which are programmed to sense inputs from the driver and the environment, to process these inputs, and to control actuators that, e.g., regulate the engine or even control the steering system. ECUs within a vehicle communicate via automotive bus systems such as the Controller Area Network (CAN), and beyond the vehicles boundaries through upcoming vehicle-to-vehicle and vehicle-to-infrastructure channels. Approaches to manipulate the communication between ECUs for the purpose of security testing and reverse-engineering of vehicular functions have been presented in the past, all of which struggle with automating the detection of system change in response to message injection. In this paper we present our findings with fuzzing CAN networks, in particular while observing individual ECUs with a sensor harness. The harness detects physical responses, which we then use in a oracle functions to inform the fuzzing process. We systematically define fuzzers, fuzzing configurations and oracle functions for testing ECUs. We evaluate our approach based on case studies of commercial instrument clusters and with an experimental framework for CAN authentication. Our results show that the approach is capable of identifying interesting ECU states with a high level of automation. Our approach is applicable in distributed cyber-physical systems beyond automotive computing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.