Abstract

The oil-water partition coefficient of organic compounds is an essential parameter for the determination of their behaviors in environments, food, drug delivery, and biomedical systems, just to name a few. In this work, we establish a highly efficient approach to quantify the partition/distribution coefficient using surface femtoliter droplets. In our approach, droplets of 1-octanol were produced on the surface of a solid substrate in contact with the flow of an aqueous solution of the analyte. The analyte was rapidly enriched in the droplets from the flow and reached the partition equilibrium in a few seconds. The entire procedure was automated by continuous solvent exchange, and the analyte partition in the droplets was quantified from the in situ UV-vis spectrum collected by a microspectrophotometer. Our approach was validated for several substances with the octanol-water partition/distribution coefficient ranging from -1.5 to 4, where our results were in good agreement with the values reported in the literature. This method took ∼3 min to detect one analyte with the volume of the organic solvent at ∼50 μL. Thus, our surface droplet platform can greatly minimize the consumption of both solvent and analytes and can shorten the time for the determination of the partition of new compounds, which overcomes the drawbacks of the traditional shake-flask method and presents excellent reproducibility, high accuracy, cost-effectiveness, and labor-saving operation. The highly efficient micro/nanoextraction, partition, and real-time detection enabled by the surface droplets has the potential for many other high-throughput applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.