Abstract

Lithium-ion cells may experience rapid degradation in later life, especially with more extreme usage protocols. The onset of rapid degradation is called the `knee point', and forecasting it is important for the safe and economically viable use for batteries. We propose a data-driven method that uses automated feature selection to produce inputs for a Gaussian process regression model that estimates changes in battery health, from which the entire capacity fade trajectory, knee point and end of life may be predicted. The feature selection procedure flexibly adapts to varying inputs and prioritises those that impact degradation. For the datasets considered, it was found that calendar time and time spent in specific voltage regions had a strong impact on degradation rate. The approach produced median root mean square errors on capacity estimates under 1\%, and also produced median knee point and end of life prediction errors of 2.6\% and 1.3\% respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.