Abstract

Over the last decade, various machine learning (ML) and statistical approaches for protein-protein interaction (PPI) predictions have been developed to help annotating functional interactions among proteins, essential for our system-level understanding of life. Efficient ML approaches require informative and non-redundant features. In this paper, we introduce novel types of expert-crafted sequence, evolutionary and graph features and apply automatic feature engineering to further expand feature space to improve predictive modeling. The two-step automatic feature-engineering process encompasses the hybrid method for feature generation and unsupervised feature selection, followed by supervised feature selection through a genetic algorithm (GA). The optimization of both steps allows the feature-engineering procedure to operate on a large transformed feature space with no considerable computational cost and to efficiently provide newly engineered features. Based on GA and correlation filtering, we developed a stacking algorithm GA-STACK for automatic ensembling of different ML algorithms to improve prediction performance. We introduced a unified method, HP-GAS, for the prediction of human PPIs, which incorporates GA-STACK and rests on both expert-crafted and 40% of newly engineered features. The extensive cross validation and comparison with the state-of-the-art methods showed that HP-GAS represents currently the most efficient method for proteome-wide forecasting of protein interactions, with prediction efficacy of 0.93 AUC and 0.85 accuracy. We implemented the HP-GAS method as a free standalone application which is a time-efficient and easy-to-use tool. HP-GAS software with supplementary data can be downloaded from: http://www.vinca.rs/180/tools/HP-GAS.php .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call