Abstract
ABSTRACTExtracting ground surface from high-density point clouds collected by Mobile Laser Scanning (MLS) systems is of vital importance in urban planning and digital city mapping. This article proposes a novel approach for automated extraction of ground surface along urban roads from MLS point clouds. The approach, which was designed to handle both ordered and unordered MLS point clouds, consists of three key steps: constructing vertical profile from MLS point clouds along the vehicle trajectory; extracting candidate ground points using an adaptive alpha shapes algorithm; refining the candidate ground points with an elevation variance filter. To evaluate the performance of the proposed method, experiments were conducted using two types of urban street-scene point clouds. The results reveal that the ground points can be detected with an error rate of as low as 1.9%, proving that our proposed method offers a promising solution for automated extraction of ground surface from MLS point clouds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.