Abstract
Left ventricular ejection fraction (EF) is a key component of heart failure quality measures used within the Department of Veteran Affairs (VA). Our goals were to build a natural language processing system to extract the EF from free-text echocardiogram reports to automate measurement reporting and to validate the accuracy of the system using a comparison reference standard developed through human review. This project was a Translational Use Case Project within the VA Consortium for Healthcare Informatics. We created a set of regular expressions and rules to capture the EF using a random sample of 765 echocardiograms from seven VA medical centers. The documents were randomly assigned to two sets: a set of 275 used for training and a second set of 490 used for testing and validation. To establish the reference standard, two independent reviewers annotated all documents in both sets; a third reviewer adjudicated disagreements. System test results for document-level classification of EF of <40% had a sensitivity (recall) of 98.41%, a specificity of 100%, a positive predictive value (precision) of 100%, and an F measure of 99.2%. System test results at the concept level had a sensitivity of 88.9% (95% CI 87.7% to 90.0%), a positive predictive value of 95% (95% CI 94.2% to 95.9%), and an F measure of 91.9% (95% CI 91.2% to 92.7%). An EF value of <40% can be accurately identified in VA echocardiogram reports. An automated information extraction system can be used to accurately extract EF for quality measurement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the American Medical Informatics Association
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.