Abstract

The need for automated methods to detect and extract marine mammal vocalizations from acoustic data has increased in the last few decades due to the increased availability of long-term recording systems. Automated dolphin whistle extraction represents a challenging problem due to the time-varying number of overlapping whistles present in, potentially, noisy recordings. Typical methods utilize image processing techniques or single target tracking, but often result in fragmentation of whistle contours and/or partial whistle detection. This study casts the problem into a more general statistical multi-target tracking framework and uses the probability hypothesis density filter as a practical approximation to the optimal Bayesian multi-target filter. In particular, a particle version, referred to as a sequential Monte Carlo probability hypothesis density (SMC-PHD) filter, is adapted for frequency tracking and specific models are developed for this application. Based on these models, two versions of the SMC-PHD filter are proposed and the performance of these versions is investigated on an extensive real-world dataset of dolphin acoustic recordings. The proposed filters are shown to be efficient tools for automated extraction of whistles, suitable for real-time implementation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.