Abstract

An automated extraction scheme for the analysis of 11 -nor-delta9-tetrahydrocannabinol-9-carboxylic acid using the Hamilton Microlab 2200, which was modified for gravity-flow solid-phase extraction, has been evaluated. The Hamilton was fitted with a six-head probe, a modular valve positioner, and a peristaltic pump. The automated method significantly increased sample throughput, improved assay consistency, and reduced the time spent performing the extraction. Extraction recovery for the automated method was > 90%. The limit of detection, limit of quantitation, and upper limit of linearity were equivalent to the manual method: 1.5, 3.0, and 300 ng/mL, respectively. Precision at the 15-ng/mL cut-off was as follows: mean = 14.4, standard deviation = 0.5, coefficient of variation = 3.5%. Comparison of 38 patient samples, extracted by the manual and automated extraction methods, demonstrated the following correlation statistics: r = .991, slope 1.029, and y-intercept -2.895. Carryover was < 0.3% at 1000 ng/mL. Aliquoting/extraction time for the automated method (48 urine samples) was 50 min, and the manual procedure required approximately 2.5 h. The automated aliquoting/extraction method on the Hamilton Microlab 2200 and its use in forensic applications are reviewed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.