Abstract

A novel algorithm for automated simultaneous exploration of datapath and Unrolling Factor (UF) during power–performance tradeoff in High Level Synthesis (HLS) using multi-dimensional particle swarm optimization (PSO) (termed as ‘M-PSO’) for control and data flow graphs (CDFGs) is presented. The major contributions of the proposed algorithm are as follows: (a) simultaneous exploration of datapath and loop UF through an integrated multi-dimensional particle encoding process using swarm intelligence; (b) an estimation model for computation of execution delay of a loop unrolled CDFG (based on a resource configuration visited) without requiring to tediously unroll the entire CDFG for the specified loop value in most cases; (c) balancing the tradeoff between power–performance metrics as well as control states and execution delay during loop unrolling; (d) sensitivity analysis of PSO parameter such as swarm size on the impact of exploration time and Quality of Results (QoR) of the proposed design space exploration (DSE) process. This analysis presented would assist the designer in pre-tuning the PSO parameters to an optimum value for achieving efficient exploration results within a quick runtime; (e) analysis of design metrics such as power, execution time and number of control steps of the global best particle found in every iteration with respect to increase/decrease in unrolling factor.The proposed approach when tested on a variety of data flow graphs (DFGs) and CDFGs indicated an average improvement in QoR of >28% and reduction in runtime of >94% compared to recent works.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.