Abstract

High-frequency (>20-MHz) ultrasound (US) is a noninvasive preoperative tool for assessment of melanocytic skin tumor thickness. Ultrasonic melanocytic skin tumor thickness estimation is not always easy and is related to the experience of the clinician. In this article, we present an automated thickness measurement method based on time-frequency analysis of US radiofrequency signals. The study was performed on 52 thin (≤1-mm) melanocytic skin tumors (46 melanocytic nevi and 6 melanomas). Radiofrequency signals were obtained with a single-element focused transducer (fundamental frequency, 22 MHz; bandwidth, 12-28 MHz). The radiofrequency data were analyzed in the time-frequency domain to make the tumor boundaries more noticeable. The thicknesses of the tumors were evaluated by 3 different metrics: histologically measured Breslow thickness, manually measured US thickness, and automatically measured US thickness. The results showed a higher correlation coefficient between the automatically measured US thickness and Breslow thickness (r= 0.83; P< .0001) than the manually measured US thickness (r = 0.68; P < .0001). The sensitivity of the automated tumor thickness measurement algorithm was 96.55%, and the specificity was 78.26% compared with histologic measurement. The sensitivity of the manually measured US thickness was 75.86%, and the specificity was 73.91%. The efficient automated tumor thickness measurement method developed could be used as a tool for preoperative assessment of melanocytic skin tumor thickness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.