Abstract
We developed a machine learning model for efficient analysis of echocardiographic image quality in hospitalized patients.This study applied a machine learning model for automated transthoracic echo (TTE) image quality scoring in three inpatient groups. Our objectives were: (1) Assess the feasibility of a machine learning model for echo image quality analysis, (2) Establish the comprehensiveness of real-world TTE reporting by clinical group, and (3) Determine the relationship between machine learning image quality and comprehensiveness of TTE reporting. A machine learning model was developed and applied to TTEs from three matched cohorts for image quality of nine standard views. Case TTEs were comprehensive studies in mechanically ventilated patients between 01/01/2010 and 12/31/2015. For each case TTE, there were two matched spontaneously breathing controls (Control 1: Inpatients scanned in the lab and Control 2: Portable studies). We report the overall mean maximum and view specific quality scores for each TTE. The comprehensiveness of an echo report was calculated as the documented proportion of 12 standard parameters. An inverse probability weighted regression model was fit to determine the relationship between machine learning quality score and the completeness of a TTE report. 175 mechanically ventilated TTEs were included with 350 non-intubated samples (175 Control 1: Lab and 175 Control 2: Portable). In total, the machine learning model analyzed 14,086 echo video clips for quality. The overall accuracy of the model with regard to the expert ground truth for the view classification was 87.0%. The overall mean maximum quality score was lower for mechanically ventilated TTEs (0.55 [95% CI 0.54, 0.56]) versus 0.61 (95% CI 0.59, 0.62) for Control 1: Lab and 0.64 (95% CI 0.63, 0.66) for Control 2: Portable; p = 0.002. Furthermore, mechanically ventilated TTE reports were the least comprehensive, with fewer reported parameters. The regression model demonstrated the correlation of echo image quality and completeness of TTE reporting regardless of the clinical group. Mechanically ventilated TTEs were of inferior quality and clinical utility compared to spontaneously breathing controls and machine learning derived image quality correlates with completeness of TTE reporting regardless of the clinical group.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The international journal of cardiovascular imaging
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.