Abstract
PurposePlanning for bone tumor resection surgery is a technically demanding and time-consuming task, reliant on manual positioning of planar cuts in a virtual space. More elaborate cutting approaches may be possible through the use of surgical robots or patient-specific instruments; however, methods for preparing such a resection plan must be developed.MethodsThis work describes an automated approach for generating conformal bone tumor resection plans, where the resection geometry is defined by the convex hull of the tumor, and a focal point. The resection geometry is optimized using particle swarm, where the volume of healthy bone collaterally resected with the tumor is minimized. The approach was compared to manually prepared planar resection plans from an experienced surgeon for 20 tumor cases.ResultsIt was found that algorithm-generated hull-type resections greatly reduced the volume of collaterally resected healthy bone. The hull-type resections resulted in statistically significant improvements compared to the manual approach (paired t test, p < 0.001).ConclusionsThe described approach has potential to improve patient outcomes by reducing the volume of healthy bone collaterally resected with the tumor and preserving nearby critical anatomy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computer Assisted Radiology and Surgery
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.