Abstract

Significant achievements have been made in the fMRI field by pooling statistical results from multiple studies (meta-analysis). More recently, fMRI standardization efforts have focused on enabling the joint analysis of raw fMRI data across studies (mega-analysis), with the hope of achieving more detailed insights. However, it has not been clear if such analyses in the EEG field are possible or equally fruitful. Here we present the results of a large-scale EEG mega-analysis using 18 studies from six sites representing several different experimental paradigms. We demonstrate that when meta-data are consistent across studies, both channel-level and source-level EEG mega-analysis are possible and can provide insights unavailable in single studies. The analysis uses a fully-automated processing pipeline to reduce line noise, interpolate noisy channels, perform robust referencing, remove eye-activity, and further identify outlier signals. We define several robust measures based on channel amplitude and dispersion to assess the comparability of data across studies and observe the effect of various processing steps on these measures. Using ICA-based dipolar sources, we also observe consistent differences in overall frequency baseline amplitudes across brain areas. For example, we observe higher alpha in posterior vs anterior regions and higher beta in temporal regions. We also detect consistent differences in the slope of the aperiodic portion of the EEG spectrum across brain areas. In a companion paper, we apply mega-analysis to assess commonalities in event-related EEG features across studies. The continuous raw and preprocessed data used in this analysis are available through the DataCatalog at https://cancta.net.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.