Abstract
BackgroundAssessing left ventricular diastolic function (LVDF) with echocardiography as per ASE guidelines is tedious and time-consuming. The study aims to develop a fully automatic approach of this procedure by a lightweight hybrid algorithm combining deep learning (DL) and machine learning (ML). MethodsThe model features multi-modality input and multi-task output, measuring LV ejection fraction (LVEF), left atrial end-systolic volume (LAESV), and Doppler parameters: mitral E wave velocity (E), A wave velocity (A), mitral annulus e’ velocity (e’), and tricuspid regurgitation velocity (TRmax). The algorithm was trained and tested on two internal datasets (862 and 239 echocardiograms) and validated using three external datasets, including EchoNet-Dynamic and CAMUS. The ASE diastolic function decision tree and total probability theory were used to provide diastolic grading probabilities. ResultsThe algorithm, named MMnet, demonstrated high accuracy in both test and validation datasets, with Dice coefficients for segmentation between 0.922 and 0.932 and classification accuracies between 0.9977 and 1.0. The mean absolute errors (MAEs) for LVEF and LAESV were 3.7 % and 5.8 ml, respectively, and for LVEF in external validation, MAEs ranged from 4.9 % to 5.6 %. The diastolic function grading accuracy was 0.88 with hard criteria and up to 0.98 with soft criteria which account for the top two probability in total probability theory. ConclusionsMMnet can automatically grade ASE diastolic function with high accuracy and efficiency by annotating 2D videos and Doppler images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.