Abstract

An automated system for continuous on-line monitoring of biogenic emissions is presented. The system is designed in such a way that volatiles, emitted as reaction to biotic or abiotic stress, can be unequivocally elucidated. Two identical sampling units, named target and reference bulb, are therefore incorporated into the system and consecutively analyzed in monitoring experiments. A number of precautions were considered during these experiments to avoid the application of unwanted stress onto both organisms. Firstly, the system is constructed in such a way that both bulbs are continuously flushed, i.e. before, during and after analysis, with high purity air to avoid any accumulation of emitted volatiles. Moreover, the air is pre-humidified by bubbling it through water to sustain the biological samples for longer periods in the in vitro environment. Sorptive enrichment on polydimethylsiloxane (PDMS) was used to trap the headspace volatiles. The hydrophobic nature of this material permitted easy removal of trapped moisture by direct flushing of the sampling cartridge with dry air before desorption. The system was used to monitor the emissions from in vitro mechanically wounded ivy ( Hedera helix) and of in vitro grown tomato plants ( Lycopersicon esculentum Mill.) upon cotton leafworm ( Spodoptera littoralis) feeding. Differences in light and dark floral emissions of jasmine ( Jasminum polyanthum) were also studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.