Abstract

Advances in materials engineering, electronic circuits, sensors, signal processing and classification techniques have allowed computational systems to interpret biological quantities, recognizing physiological conditions. The next scientific challenge is to turn those technologies portable, wearable or even implantable, above all, being energy efficient. A prospective application for the next generation of portable electroencephalogram (EEG) signal processing systems is hazard prevention in attention-demanding activities. EEG keeps closest connection to the preoptic area where sleep is originated. In this paper, a methodology for assessing alertness level based on a single EEG channel (Pz–Oz) is proposed, allowing the reduction of the required hardware and the computational time of the algorithms, besides being more portable than multi-channel based ones. Two new spectral power-based indices (i) γ/δ and (ii) (γ+β)/(δ+α) are computed from EEG rhythms through the normalized Haar discrete wavelet packet transform (WPT). The Haar WPT allows precisely resolving the brain rhythms into packets whilst demanding a relatively low computational cost. The effectiveness of the proposed indices in drowsiness detection is evaluated by comparison with five indices originally proposed for multi-channel processing. Statistical Wilcoxon signed rank test is applied to evaluate the performance of the entire set of indices, evidencing the significant changes in the alert-drowsy transitions of 20 subjects of a public database. The proposed indices (ii) and (i) presented the most and second more significant p-Values (p < 0.001 and p = 0.001), respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.