Abstract
The popularity of using vertical take-off and landing unmanned aerial systems continues to rise. Although the use of these devices seems to be almost limitless, the main drawback is still the battery capacity and the need to replace or recharge it several times per hour. This article provides a technical overview of the development of an experimental mechatronic system for automatic drone battery management called Droneport. It was developed as a system with a landing platform, automatic battery exchange and recharging outside the drone, allowing a quick return to the mission. The first part presents its mechanical design, installed instrumentation and software environment. The next part is devoted to the description of the individual hardware components, highlighting the specific problems that had to be solved to optimize size, weight and robustness requirements. The final section summarizes our observations regarding the contribution of this tool to the autonomy of drones or UAVs in general.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.