Abstract

This paper presents a method for the automatic detection and classification of defects in radiographic images of welded joints obtained by exposure technique of double wall double image (DWDI). The proposed method locates the weld bead on the DWDI radiographic images, segments discontinuities (potential defects) in the detected weld bead and extracts features of these discontinuities. These features are used in a feed-forward multilayer perceptron (MLP) with backpropagation learning algorithm to classify descontinuities in “defect and no-defect”. The classifier reached an accuracy of 88.6% and a F-score of 87.5% for the test data. A comparison of the results with the earlier studies using SWSI and DWSI radiographic images indicates that the proposed method is promising. This work contributes towards the improvement of the automatic detection of welding defects in DWDI radiographic image which results can be used by weld inspectors as a support in the preparation of technical reports.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call